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Abstract 

We describe Factored Spectrally Transformed Linear Mixed Models (FaST-LMM), an 

algorithm for genome-wide association studies that scales linearly in the number of individuals 

in both runtime and memory use. On Wellcome Trust data with 15,000 individuals, 

FaST-LMM runs an order of magnitude faster than current efficient algorithms. Our algorithm 

can analyze data for 120,000 individuals in just a few hours, whereas the current algorithms fail 

at even 20,000 individuals (http://mscompbio.codeplex.com).  
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The problem of confounding by population structure, family structure, and cryptic relatedness 

in genome-wide association studies (GWAS) is widely appreciated
1-7

. Statistical methods for 

correcting these confounders include linear mixed models (LMMs)
2-10

, genomic control, 

family-based association tests, structured association, and Eigenstrat
7
. In contrast to the other 

methods, LMMs have been shown capable of capturing all of these confounders 

simultaneously, without knowledge of which are present, and without the need to tease them 

apart
7
. Unfortunately, LMMs are computationally expensive relative to simpler models. In 

particular, the runtime and memory footprint required by these models scale as the cube and 

square of the number of individuals in the dataset, respectively. This bottleneck means that 

LMMs run slowly or not at all on currently or soon-to-be available large datasets. 

 

Roughly speaking, LMMs tackle confounders by using measures of genetic similarity to 

capture the probabilities that pairs of individuals share causative alleles.  Such measures 

include those based on IBD
10,11

 and the realized relationship matrix (RRM)
9,10,12

, and have 

been estimated with a small sample of markers (200-2000 in number)
2,4

. Herein, we take 

advantage of such sampling to make LMM analysis applicable to extremely large datasets. In 

particular, we introduce a reformulation of LMMs, called FaST-LMM for Factored Spectrally 

Transformed Linear Mixed Models. We show that, provided (1) the number of SNPs used to 

estimate genetic similarity between pairs of individuals is less than the number of individuals 

in the dataset (regardless of how many SNPs are to be tested) and (2) the RRM is used to 

determine these similarities, then FaST-LMM produces exactly the same results as a standard 

LMM, but with a runtime and memory footprint that is only linear in the number of individuals. 

FaST-LMM thus dramatically increases the size of datasets that can be analyzed with LMMs 

and additionally makes currently feasible analyses much faster.  

 

Our FaST-LMM algorithm builds on the insight that the maximum likelihood (ML)—or 

alternatively, the restricted maximum likelihood (REML)—of a LMM can be rewritten as a 

function of just a single parameter, , the ratio of the genetic variance to the residual 

variance
3,13

.  Consequently, the identification of the ML (or REML) parameters becomes an 

optimization problem over  only. The algorithm Efficient Mixed Model Association 

(EMMA)
3
 speeds up the evaluation of the log likelihood for any value of  which is ordinarily 

cubic in the number of individuals, by clever use of spectral decompositions. However, the 

approach requires a new spectral decomposition for each SNP tested (a cubic operation). The 

algorithms Efficient Mixed Model Association eXpedited (EMMAX) and Population 

Parameters Previously Determined (P3D)
4,5

 provide additional computational savings by 

assuming that variance parameters for each tested SNP are the same, removing the expensive 

cubic computation per SNP.   

 

In contrast to these methods, FaST-LMM requires only a single spectral decomposition to test 

all SNPs, even without assuming variance parameters to be the same across SNPs, and offers a 

decrease in memory footprint and additional speedups. A key insight behind our approach is 

that the spectral decomposition of the genetic similarity matrix makes it possible to transform 

(rotate) the phenotypes, SNPs to be tested, and covariates in such a way that this rotated data 

becomes uncorrelated and hence amenable to analysis with a linear regression model, which 

has a runtime and memory footprint linear in the number of individuals. 

 

In general, the size (the number of entries) of the required rotation matrix is quadratic in the 

number of individuals, and computing this matrix by way of a spectral decomposition has cubic 

runtime in the number of individuals. When the number of SNPs used to construct the genetic 

similarity matrix is less than the number of individuals, however, the size of the matrix required 



to perform the rotations is linear in the number of individuals (and linear in this number of 

SNPs), and the time required to compute it is linear in the number of individuals (and quadratic 

in this number of SNPs). Intuitively, these savings can be achieved because the intrinsic 

dimensionality of the space spanned by the individuals and SNPs used to construct the 

similarity matrix can never be higher than the smaller of these two values. Thus, we can always 

choose to perform operations in the smaller space without any loss of information, while the 

computations remain exact. This basic idea has been exploited previously
8,14

, but when applied 

to GWAS, would require expensive computations per SNP, making these approaches far less 

efficient than FaST-LMM.   

 

To achieve our linear runtime and memory footprint, the spectral decomposition of the genetic 

similarity matrix must be computable without the explicit computation of the matrix itself. The 

RRM has this property as do other matrices (Supplementary Note 1). A more formal 

description of FaST-LMM is given in Methods.  

 

We compared memory footprint and runtime for non-parallelized implementations of the 

FaST-LMM and EMMAX/P3D algorithms (Fig. 1). For the latter, we used the EMMAX 

implementation, which was no less efficient than P3D (in TASSEL) in terms of runtime and 

memory use. In the comparison, we used GAW14 data to construct synthetic datasets having 

roughly 1, 5, 10, 20, 50 and 100 times as many individuals and always the same number of 

SNPs (approximately 8K) as the original data. The largest such dataset contained 123,800 

individuals. We tested all SNPs and used them all to estimate genetic similarity. EMMAX 

would not run on the 20x, 50x, or 100x datasets, because the memory required to store the large 

matrices exceeded the 32 gigabytes (GB) available. In contrast, FaST-LMM, which did not 

require these matrices (because it bypassed their computation, using them only implicitly), 

completed the analyses using 28 GB of memory on the largest dataset. Runtime results 

highlight the linear dependence of the computations on the number of individuals when the 

numbers of individuals exceeds the 8K SNPs used to construct the RRM. Furthermore, 

computations remain practical within our approach even when the variance parameters are 

re-estimated for each test. 

 

It is known that the LMM with no fixed effects using an RRM constructed from a set of SNPs is 

equivalent to a linear regression of the SNPs on the phenotype, with weights integrated over 

independent Normal distributions having the same variance
9,10

. In this view, sampling SNPs 

for construction of the RRM can be seen as the omission of regressors, and hence an 

approximation. Nonetheless, SNPs could be sampled uniformly across the genome so that 

linkage disequilibrium would diminish the effects of sampling. To examine this issue, we 

compared association P values with and without sampling on the WTCCC data for the CD 

phenotype. Specifically, we tested all SNPs on chromosome 1 while using SNP sets of various 

sizes from all but this chromosome—the complete set (340K) and uniformly distributed 

samples of size 8K and 4K—to compute the RRM (Supplementary Note 2). The P values 

resulting from the complete and sampled sets were similar (Fig. 2). More important, the two 

algorithms made nearly identical calls of significance, using the genome-wide significance 

threshold of 5 × 10
-7

. Namely, 24 SNPs were called significant when the complete set was 

used, whereas the 8K and 4K analyses labeled only one additional SNP significant and missed 

none. By comparison, the Armitage trend test (ATT) labeled seven additional SNPs significant 

and missed none. Furthermore, the  statistic was similar for the complete, 8K, and 4K 

analyses—1.132, 1.173, 1.203, respectively—in contrast to  = 1.333 for the ATT. 

Corresponding Q-Q plots are shown in Supplementary Fig. 1. Finally, using these SNP 

samples to construct genetic similarity, FaST-LMM ran an order of magnitude faster than 



EMMAX: 23 and 53 minutes for the 4K and 8K FaST-LMM analyses, and 260 and 290 

minutes for the respective EMMAX analyses.  

 

With respect to selecting SNPs to estimate genetic similarity, an alternative to uniformly 

distributed sampling would be to choose SNPs in strong association with the phenotype.  On 

the WTCCC data, we found that using the 200 most strongly associated SNPs according to 

ATT outperformed the 8K sample ( = 1.135). 

 

There are several future directions.  One is to apply FaST-LMM to multivariate analyses. 

Once the rotations have been applied to the SNPs, covariates, and phenotype, then multivariate 

additive analyses, including those using regularized estimation methods, can be achieved in 

time linear in the number of individuals with no additional spectral decompositions or 

rotations. In addition, the time complexity of FaST-LMM can be further reduced by using only 

the top eigenvectors of the spectral decomposition to rotate the data (those with the largest 

eigenvalues). On the WTCCC data, use of fewer than 200 eigenvectors yielded univariate 

P values comparable to those obtained from many thousands of eigenvectors. Furthermore, the 

ideas behind FaST-LMM and Compressed Mixed Linear Models
4
 can be combined 

(Supplementary Note 1). Finally, the identification of associations between genetic markers 

and gene expression—eQTL analyses—can be thought of as multiple applications of GWAS
15

, 

making our FaST-LMM approach applicable to such analyses.  

 

Software updates for FaST-LMM, including source code and executables, are available from 

http://mscompbio.codeplex.com.  
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Figure 1. Memory footprint (a) and runtime (b) of FaST-LMM running on a single processor 

as a function of the number of individuals in synthetic datasets based on GAW14. In each run, 

we used 7,579 SNPs both to estimate genetic similarity (RRM for FaST-LMM and IBS for 

EMMAX) and to test for association. FaST-LMM full refers to an analysis where the variance 

parameters were re-estimated for each test, whereas FaST-LMM refers to estimating these 

parameters only once for the null model, as in EMMAX/P3D. FaST-LMM and FaST-LMM 

full had the same memory footprint. EMMAX would not run on the datasets that contained 20 

or more times the number of individuals in the GAW14 data, because the memory required to 

store the large matrices exceeded the 32 GB available.  

 

  



Figure 2. Accuracy of association P values resulting from SNP sampling on WTCCC data for 

the CD phenotype. Each point in the plot shows the negative log P values of association for a 

particular SNP from a LMM using a 4K SNP sample (y-axis) and all SNPs (x-axis) to compute 

the RRM. The complete set used all 340K SNPs from all but chromosome 1, whereas the 4K 

sample used equally spaced SNPs from these chromosomes. All 28K SNPs in chromosome 1 

were tested. Dashed lines show the genome-wide significance threshold (5 × 10
-7

). The 

correlation for the points in the plot is 0.97. A corresponding plot for an 8K sample looks 

essentially the same (correlation 0.98). 
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Online Methods 

Experimental Details 

The calibration of P values was assessed using the λ statistic, also known as the inflation factor 

from genomic control
1,18

. The value λ is defined as the ratio of the median observed to median 

theoretical test statistic. Values of λ substantially greater than (less than) 1.0 are indicative of 

inflation (deflation).  

 

The Genetic Analysis Workshop (GAW) 14 data
16

 consisted of autosomal SNP data from an 

Affymetrix SNP panel and a phenotype indicating whether an individual smoked a pack of 

cigarettes a day or more for six months or more. In addition to the curation provided by GAW, 

we excluded a SNP when either (1) its minor allele frequency was less than 0.05, (2) its values 

were missing in more than 5% of the population, or its allele frequencies were not in 

Hardy-Weinberg equilibrium (P < 0.0001). In addition, we excluded an individual with more 

than 10% SNP values missing. After filtering, there were 7,579 SNPs across 1,261 individuals. 

The data consisted of multiple races and numerous close family members—1,034 individuals 

in the dataset had parents, children, or siblings also in the dataset.  

 

We used the GAW14 data as the basis for creating large synthetic datasets to evaluate runtimes 

and memory use. Datasets GAW14.x, with x = 1, 5, 10, 20, 50, and 100 were generated. 

Roughly, we constructed the synthetic GAW14.x dataset by “copying” the original dataset x 

times. For each white, black, and Hispanic individual in the original data (1,238 individuals), 

we created x individuals in the copy. Similarly, we copied the family relationships among these 

individuals from the pedigree on the real data. For each individual with no parents, we sampled 

data for each SNP using the race-based marginal frequency of that SNP in the original dataset. 

We determined the SNPs for the remaining individuals from the parental SNPs assuming a rate 

of 38 recombination events per genome. We then sampled a phenotype for each individual 

from a generalized linear mixed model (GLMM) with a logistic link function whose 

parameters were adjusted to mimic that of the real data. In particular, we adjusted the offset and 

genetic-variance parameters of the GLMM so that (1) the phenotype frequency in the real and 

synthetic data were almost the same, and (2) the genetic variance parameter of a LMM fit to the 

real and synthetic data were comparable. We assumed that there were no fixed effects. 

Analysis of GAW14 and that of GAW14.1 had almost identical runtimes and memory 

footprints.  

 

The Wellcome Trust Case Control Consortium (WTCCC) 1 data consisted of the SNP and 

phenotype data for seven common diseases: bipolar disorder (BP), coronary artery disease 

(CAD), hypertension (HT), Chron’s disease (CD), rheumatoid arthritis (RA), type-I diabetes 

(T1D), and type-II diabetes (T2D)
17

. Each phenotype group contained about 1,900 individuals. 

In addition, the data included a set of approximately 1,500 controls from the UK Blood Service 

Control Group (NBS). The data did not include a second control group from the 1958 British 

Birth Cohort (58C), as permissions for it precluded use by a commercial organization. Our 

analysis for a given disease phenotype used data from the NBS group and the remaining six 

phenotypes as controls. In our initial analysis, we excluded individuals and SNPs as previously 

described
17

. The difference between values of λ from an (uncorrected) analysis using ATT, and 

the ATT values from the original analysis
17

 averaged 0.02 across the phenotypes with a 

standard deviation of 0.01, indicating that the absence of the 58C data in our analysis had little 

effect on inflation or deflation. In these initial analyses, we found a substantial 



over-representation of P values equal to one, and traced this to the existence of thousands of 

non-varying SNPs or single-nucleotide constants (SNCs). In addition, we found (not 

surprisingly) that SNPs with very low minor-allele frequencies led to skewed P value 

distributions. Consequently, we employed a more conservative SNP filter, also described by 

the WTCCC
17

, wherein a SNP was excluded if either its minor-allele frequency was less than 

1%, or it was missing in greater than 1% of individuals. After filtering, 368,584 SNPs 

remained.  

 

In the sampling and timing experiments, we included non-white individuals and close family 

members to increase the potential for confounding and thereby better exercise the LMM. In 

total, there were 14,925 individuals across the seven phenotypes and control. We used only the 

CD phenotype, because it was the only one that had appreciable apparent inflation according to 

ATT P values. We created the 8K and 4K SNP sets used to estimate genetic similarity from all 

but chromosome 1 by including every forty-second and every eighty-fourth SNP, respectively, 

along each chromosome. 

 

All analyses assumed a single additive effect of a SNP on the phenotype, using a 0/1/2 

encoding for each SNP. The FaST-LMM runs used the RRM, whereas the EMMAX runs used 

the IBS kinship matrix. Missing SNP data was mean imputed. A likelihood ratio test was used 

to compute P values for FaST-LMM. Runtimes were measured on a dual AMD six-core 

Opteron machine with a 2.6GHz clock and 32 GB of RAM. Only one core was used. 

FaST-LMM used the AMD Core Math Library.   

FaST-LMM 

In this section, we highlight important points in the development of the maximum likelihood 

version of FaST-LMM. A complete description, including minor modifications needed for the 

REML version, is given in Supplementary Note 1.  

 

The LMM log likelihood of the phenotype data, y (dimension n × 1), given fixed effects X 

(dimension n × d), which include the SNP, the covariates, and the column of ones 

corresponding to the bias (offset), can be written as 

 

   (  
    

   )       (       
     

  )  (1) 

 

where N(r|m; Σ) denotes a Normal distribution in r with mean m and covariance matrix Σ; K 

(dimension n × n) is the genetic similarity matrix; I is the identity matrix; e (scalar) is the 

magnitude of the residual variance; σg
2
 (scalar) is the magnitude of the genetic variance; and β  

(dimension d × 1) are the fixed-effect weights.  

 

To efficiently estimate the parameters β, σg
2
 and σe

2
 and the log likelihood at those values, we 

can factor Equation 1. In particular, we let δ be σe
2
/ σg

2
 and USU

T
 be the spectral decomposition 

of K (where U
T
 denotes the transpose of U), so that Equation 1 becomes   
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where |K| denotes the determinant of matrix K. The determinant of the genetic similarity 

matrix, |U(S + δI)U
T
| can be written as |S + δI|. The inverse of the genetic similarity matrix can 

be rewritten as U(S + δI)
-1

U
T
. Thus, after additionally moving out U from the covariance term 

so that it now acts as a rotation matrix on the inputs (X) and targets (y), we obtain   
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The “Fa” in FaST-LMM gets its name from this factorization. As the covariance matrix of the 

Normal distribution is now a diagonal matrix S + δI, the log likelihood can be rewritten as the 

sum over n terms, yielding   
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where [X]I: denotes the i
th

 row of X. Note that this expression is equal to the product of n 

univariate Normal distributions on the rotated data , yielding the linear regression equation 
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To determine the values of δ, σg
2
, and β that maximize the log likelihood, we first differentiate 

Equation 2 with respect to β, set it to zero, and analytically solve for the ML value of β(δ). We 

then substitute this expression in Equation 2, differentiate the resulting expression with respect 

to   
 , set it to zero, and solve analytically for the ML value of σg

2
(δ). Next, we plug in the ML 

values of σg
2
(δ) and β(δ) into Equation 2 so that it is a function only of δ. Finally, we optimize 

this function of δ using a one-dimensional numerical optimizer based on Brent’s method 

(Supplementary Note 1).  

 

Note that, given δ and the spectral decomposition of K, each evaluation of the likelihood has a 

runtime that is linear in n. Consequently, when testing s SNPs, the time complexity is O(n
3
) for 

finding all eigenvalues (S) and eigenvectors (U) of K, O(n
2
s) for rotating the phenotype vector 

y, and all of the SNP and covariate data (that is, computing U
T
y and U

T
X), and O(Cns) for 

performing C evaluations of the log likelihood during the one-dimensional optimization over δ. 

Therefore, the total time complexity of FaST-LMM, given K, is O(n
3
 + n

2
s + Cns). By keeping 

δ fixed to its value from the null model (analogously to EMMAX/P3D), this complexity 

reduces to O(n
3
 + n

2
s + Cn). The size of both K and U is O(n

2
), which dominates the space 

complexity, as each SNP can be processed independently so that there is no need to load all 

SNP data into memory at once. In most applications, the number of fixed effects per test, d, is a 

single digit integer and is omitted in these expressions because its contribution is negligible.  

 

Next we consider the case where K is of low rank—that is, k, the rank of K is less than n, the 



number of individuals. This case will occur when the RRM is used and the number of (linearly 

independent) SNPs used to estimate it, sc=k, is smaller than n. For a more general exposition, 

wherein K is of low rank for other reasons—for example, by forcing some eigenvalues to 

zero—see Supplementary Note 1.  

 

In the complete spectral decomposition of K given by USU
T
, we let S be an n × n diagonal 

matrix containing the k non-zero eigenvalues on the top-left of the diagonal, followed by n - k 

zeros on the bottom-right. In addition, we write the n × n orthonormal matrix U as [U1, U2], 

where U1 (of dimension n × k) contains the eigenvectors corresponding to non-zero 

eigenvalues, and U2 (of dimension n × n - k) contains the eigenvectors corresponding to zero 

eigenvalues. Thus, K is given by USU
T
 = U1S1U1

T
 + U2S2U2

T
.  Furthermore, as S2 is [0], K 

becomes U1S1U1
T
, the k-spectral decomposition of K, so-called because it contains only k 

eigenvectors and arises from taking the spectral decomposition of a matrix of rank k. The 

expression K + δ I appearing in the LMM likelihood, however, is always of full rank (because 

δ>0):  

 

       (    )    [
      
   

]      

 

Therefore, it is not possible to ignore U2 as it enters the expression for the log likelihood. 

Furthermore, directly computing the complete spectral decomposition does not exploit the low 

rank of K. Consequently, we use an algebraic trick involving the identity U2 U2
T 

= I - U1 U1
T
 to 

rewrite the likelihood in terms not involving U2 (see Equation 3.4 in Supplementary Note 1). 

As a result, we incur only the time and space complexity of computing U1 rather than U.  

 

Given the  -spectral decomposition of K, the maximum likelihood of the model can be 

evaluated with time complexity O(nsk) for the required rotations and O(C(n + k)s) for the C 

evaluations of the log likelihood during the one-dimensional optimizations over δ. By keeping 

δ fixed to its value from the null model, as in EMMAX/P3D, O(C(n + k)s) is reduced to O(C(n 

+ k)). In general, the k-spectral decomposition can be computed by first constructing the 

genetic similarity matrix from k SNPs at a time complexity of O(n
2
sc) and space complexity of 

O(n
2
), and then finding its first k eigenvalues and eigenvectors at a time complexity of O(n

2
k). 

When the RRM is used, however, the k-spectral decomposition can be performed more 

efficiently by circumventing the construction of K, because the singular vectors of the data 

matrix are the same as the eigenvectors of the RRM constructed from that data 

(Supplementary Note 1). In particular, the  -spectral decomposition of K can be obtained 

from the singular value decomposition of the n × sc SNP matrix directly, which is an O(nsck) 

operation. Therefore, the total time complexity of low-rank FaST-LMM using δ from the null 

model is O(nsck + nsk + C(n + k)). Assuming SNPs to be tested are loaded into memory in 

small blocks, the total space complexity is O(nsc).  

 

Finally, we note that, for both the full and low-rank versions of FaST-LMM, the rotations (and, 

if performed, the search for δ for each test) are easily parallelized. Consequently, the runtime of 

the LMM analysis is dominated by the spectral decomposition (or singular value 

decomposition for the low-rank version). Although parallel algorithms for singular-value 

decomposition exist, improvements to such algorithms should lead to even greater speedups.  
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Supplementary Figure 1 Q-Q plots for the WTCCC data. 

Supplementary Note 1 The FaST-LMM algorithm. 

Supplementary Note 2 Null-model contamination. 
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Q-Q plots for the WTCCC data. Shown are observed versus expected negative log P values for

the association analyses on the CD phenotype described in the main paper. We used FaST-LMM

to test all SNPs on chromosome 1, and SNP sets of various sizes from all but this chromosome—the

complete set (340K), 8K, and 4K—to compute the RRM. We also used ATT to compute P values.
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Supplementary Note 1: The FaST-LMM Algorithm

Here we describe our approach called FaST-LMM, which stands for Factored Spectrally Transformed

Linear Mixed Models. We derive formulas that allow for efficient evaluation of the likelihood as well

as the maximum likelihood (ML) and restricted maximum likelihood (REML) parameters. We con-

sider the cases where the genetic similarity matrix has full and low rank separately. The following

notation will be used.

• n denotes the cohort size (the number of individuals represented in the data set).

• s denotes the total number of SNPs to be tested.

• d denotes the number of fixed effects in a single model, including the offset, the covariates,

and in the case of an alternative model, the SNP to be tested. Although we use only one SNP

at a time in our work, all equations follow regardless of the number of SNPs fixed effects.

• k denotes the rank of the genetic similarity matrix.

• sc denotes the number of SNPs used to construct the genetic similarity matrix.

• X ∈ R
n×d denotes the matrix of fixed effects. This matrix includes the column of 1s corre-

sponding to the offset, the covariates, and the SNP to be tested.

• y ∈ R
n×1 denotes the vector of phenotype measurements.

• K ∈ R
n×n denotes the symmetric positive (semi)-definite genetic similarity matrix.

• Ia denotes the identity matrix of dimension a. If no subscript a is given, the dimensionality is

implied by the context.

• σ2
g denotes the magnitude of the genetic variance.

• σ2
e denotes the magnitude of the residual variance.

• δ ≡ σ2

e

σ2
g

denotes the fraction of genetic variance and residual variance.

• β ∈ R
d×1 denotes the vector of fixed effect weights corresponding to X ∈ R

n×d.

• S ∈ R
n×n denotes the diagonal matrix containing the eigenvalues of K ordered by their

magnitude from large to small as diagonal elements.

• U ∈ R
n×n denotes to the matrix of eigenvectors of K, in the order of the corresponding

eigenvalues.

• USUT = K is the spectral decomposition of K.

• |A| denotes the determinant of matrix A.

• AT denotes the transpose of matrix A.
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• A−1 denotes the inverse of matrix A.

• A−T denotes the transposed inverse (or inverse of the transpose) of matrix A.

• [A]ij denotes the element of matrix A in the ith row and jth column.

• [A]i: denotes the ith row of matrix A.

• [a]i denotes the ith entry of vector a.

• 0 denotes a matrix where every entry is zero.

• [A,B] denotes the concatenation of matrices A and B.

1 LMMs with a full rank genetic similarity

We first consider the case where the genetic similarity matrix is of full rank (i.e., the rank is equal

to the cohort size).

1.1 Linear-time evaluation of the log likelihood

The log likelihood is parameterized by a weight vector β and the variances of the random components,

σ2
e and σ2

g :

LL
(

σ2

e , σ2

g , β
)

= logN
(

y|Xβ; σ2

gK + σ2

eI
)

. (1.1)

Introducing δ ≡
σ2

e

σ2
g

, the covariance matrix becomes σ2
g (K + δI), and the likelihood becomes a

function of β, δ and σ2
g [1]:

LL
(

δ, σ2

g , β
)

= logN
(

y|Xβ; σ2

g (K + δI)
)

.

Using the formula for the n-variate Normal distribution, we obtain

LL
(

δ, σ2

g , β
)

= −
1

2

(

n log
(

2πσ2

g

)

+ log (|(K + δI)|) +
1

σ2
g

(y − Xβ)
T
(K + δI)

−1
(y − Xβ)

)

. (1.2)

Letting USUT = K be the spectral decomposition of K, and noting that I = UUT, Equation 1.2

becomes

LL
(

δ, σ
2

g , β
)

= −

1

2

(

n log
(

2πσ
2

g

)

+ log
(∣

∣

(

USU
T + δUU

T
)∣

∣

)

+
1

σ2
g

(y −Xβ)T
(

USU
T + δUU

T
)

−1

(y − Xβ)

)

.

Next, we factor out U and UT from the covariance of the Normal, so that it becomes the diagonal

matrix (S + δI), obtaining

−
1

2

(

n log
(

2πσ2

g

)

+ log
(∣

∣U (S + δI)UT
∣

∣

)

+
1

σ2
g

(y − Xβ)T
(

U (S + δI)UT
)

−1
(y − Xβ)

)

. (1.3)

The determinant of the genetic similarity matrix, |U (S + δI)UT| can be written as |(S + δI)| using

the properties that |AB| = |A||B|, and that |U| = |UT| = 1. The inverse of the genetic similarity

2
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matrix can be rewritten as U (S + δI)
−1

UT using the properties that (AB)−1 = B−1A−1, that

U−1 = UT, and that U−T = U. Thus, after additionally moving out U from the covariance term so

that it now acts as a rotation matrix on the inputs (X) and targets (y), we obtain

−
1

2

(

n log
(

2πσ2

g

)

+ log
(

|U| |(S + δI)|
∣

∣UT
∣

∣

)

+
1

σ2
g

(y − Xβ)T U (S + δI)−1
UT (y − Xβ)

)

= −
1

2

(

n log
(

2πσ2

g

)

+ log (|(S + δI)|) +
1

σ2
g

((

UTy
)

−
(

UTX
)

β
)T

(S + δI)−1
((

UTy
)

−
(

UTX
)

β
)

)

.

(1.4)

The “Fa” in FaST-LMM gets its name from these factorizations. As the covariance matrix of the

Normal distribution is now a diagonal matrix (S + δI), the log likelihood can be rewritten as the

sum over n terms, yielding

−
1

2

(

n log
(

2πσ2

g

)

+

n
∑

i=1

log ([S]ii + δ) +
1

σ2
g

n
∑

i=1

([UTy]i − [UTX]i: β)
2

[S]ii + δ

)

. (1.5)

Note that this expression is equal to the product of n single-variate Normal distributions, on the

data transformed by UT, yielding the equation

LL
(

δ, σ2

g , β
)

= log
n
∏

i=1

N
([

UTy
]

i
|
[

UTX
]

i:
β; σ2

g([S]ii + δ
)

).

Having pre-computed the spectral decomposition of K, we can rotate the phenotype and all

SNPs once to get UX and Uy. Given the parameters δ, σ2
g and β each evaluation of the likelihood

is now linear in the cohort size n, as compared to cubic for direct evaluation of Equation 1.1.

1.2 Finding the maximum likelihood fixed effect weights efficiently

We take the gradient of the log likelihood in Equation 1.4 with respect to β and set it to zero, giving

0 =
1

σ2
g

(

(

UTX
)T

(S + δI)
−1
(

UTy
)

−
(

UTX
)T

(S + δI)
−1
(

UTX
)

β̂
)

.

Multiplying both sides by σ2
g and then bringing the part involving β̂ to one side, we get

(

UTX
)T

(S + δI)−1
(

UTX
)

β̂ =
(

UTX
)T

(S + δI)−1
(

UTy
)

.

Multiplying both sides by the inverse of the factor on the left side, we obtain

β̂ =
[

(

UTX
)T

(S + δI)
−1
(

UTX
)

]

−1
(

UTX
)T

(S + δI)
−1
(

UTy
)

.

As (S + δI) is a diagonal matrix, the matrix products again can be written as a sum over n inde-

pendent terms, yielding

β̂ =

[

n
∑

i=1

1

[S]ii + δ

[

UTX
]T

i:

[

UTX
]

i:

]

−1 [ n
∑

i=1

1

[S]ii + δ

[

UTX
]T

i:

[

UTy
]

i

]

,

analogous to linear regression estimates for β̂ on the rotated data. Assuming that all the terms

involving the spectral decomposition of K are precomputed, this equation can be evaluated in O(n).
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1.3 Finding the maximum likelihood genetic variance efficiently

We start by substituting β̂ from the previous section into the log likelihood, Equation 1.5, and set

the derivative with respect to σ2
g to zero, giving

0 = −
1

2







n

σ̂2
g

−
1

σ̂4
g

n
∑

i=1

(

[UTy]i − [UTX]i: β̂
)2

[S]ii + δ






.

Multiplying both sides by 2σ̂4
g and solving for σ̂2

g , we get

σ̂2

g =
1

n

n
∑

i=1

(

[UTy]i − [UTX]i: β̂
)2

[S]ii + δ
.

This equation also can be evaluated in O(n).

1.4 Efficient evaluation of the maximum likelihood

Plugging in σ̂2
g and β̂ into Equation 1.5, the log likelihood becomes a function only of δ,

LL(δ, σ̂2
g(δ), β̂(δ)) = LL(δ):

LL(δ) = −
1

2






n log (2π) +

n
∑

i=1

log ([S]ii + δ) + n + n log
1

n







n
∑

i=1

(

[UTy]i − [UTX]i: β̂(δ)
)2

[S]ii + δ












.

As described next, we optimize this function of δ using a one-dimensional numerical optimizer to find

the maximum likelihood value of δ, from which the maximum likelihood values of all the parameters

can be directly computed.

1.5 Optimization of δ

As we’ve just shown, finding the maximum log likelihood of our model (LL
(

σ2
e , σ2

g , β
)

) is equivalent

to finding the value of δ that maximizes LL(δ), a non-convex optimization problem. To avoid local

maxima in FaST-LMM, a quasi-exhaustive one dimensional optimization scheme similar to the one

proposed in [1] is applied. In order to bracket local minima, we evaluate the maximum of the log

likelihood for 100 equidistant values of log(δ), ranging -10 to 10. Then, we apply Brent’s method (a

1D numerical optimization algorithm) to find the locally optimal δ in each bracket where the middle

log likelihood is higher than the log likelihoods of the neighboring evaluations.

To speed-up a full GWAS scan, one can find the maximum likelihood setting for δ for just the

null-model, re-using the same δ for all alternative models. This speedup was described in [2] and is

used in all of our experiments unless otherwise noted.
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2 Relationship between spectral decomposition and singu-

lar value decomposition for the RRM and other factored

genetic similarity matrices

Before we discuss the low-rank version of FaST-LMM, it will be useful to review the relationship

between spectral decomposition and singular value decomposition (SVD) for matrices, for which the

factorization K = WWT is known, such as the RRM or the Eigenstrat covariance matrix [3]. In

this section, we shall refer to a matrix K that has this form as being factored.

The spectral decomposition of the genetic similarity matrix, K, given by USUT = K, yields the

eigenvectors (U) and eigenvalues (S) of K. In general, this decomposition can be determined by

first computing the genetic similarity matrix (K), and then taking the spectral decomposition of it.

For many measures of genetic similarity, including RRM, the time complexity of computing K is

O(n2sc), where sc is the number of SNPs used to compute K. Given the genetic similarity matrix,

the eigenvalues and eigenvectors of K can then be found solving the spectral decomposition at a

time complexity of O(n3) and space complexity of O(n2). If only the first k eigenvectors are desired,

the computation can be achieved with other algorithms that have time complexity of O(n2k) and a

space complexity of O(n2).

When K if factored, however, one can bypass explicit computation of K, obtaining the required

eigenvectors and eigenvalues by direct application of an SVD to the n×sc data matrix of SNP markers

at a time complexity of O(ns2
c) (or O(nsck) for only the top k eigenvectors using, for example, [4])

and space complexity of O(nsc). Construction of K can be bypassed because (1) the eigenvectors

(equivalently, singular vectors) of the factored matrix are the same as the singular vectors of the

data matrix, and (2) the eigenvalues (equivalently singular values) of the factored matrix are the

square of the singular values of the data matrix. This relationship is widely-known (e.g., [5]) and is

demonstrated below. In our experiments, FaST-LMM bypasses computation of the factored matrix

to obtain the required spectral decomposition whenever sc < n.

Note that, when the rank of K is less than the cohort size n (such as occurs when the data matrix

used to compute the factored genetic similarity matrix represents fewer SNPs than individuals),

the SVD with time cost O(ns2
c
) is actually an economy SVD, that is, it yields only the first sc

eigenvectors. This set of eigenvectors is denoted U1 in Section 3 and referred to as the k-spectral

decomposition in the main paper.

We now demonstrate the relationship just noted. Let W ∈ R
n×sc [6] be the matrix containing

the set of SNPs used to compute the factored matrix, K, defined as

K ≡ WWT. (2.1)

Let US̃VT be the SVD of W. Then Equation 2.1 can be rewritten as

K =
(

US̃VT

)(

US̃VT

)T

= US̃VTVS̃UT.

Because VTV = I, we obtain

K = US̃S̃UT = USUT,
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where Sii ≡ S̃iiS̃ii. By definition, U consists of the eigenvectors of K (because it satisfies the

properties of a spectral decomposition of K, namely that K = USUT where S is diagonal and U

contains orthonormal vectors). Furthermore, the eigenvalues of K are given by S̃2

ii. Consequently,

we can obtain the spectral decomposition of K by computing the SVD of W, which has time cost

O(ns2
c
).

3 LMMs with a low rank genetic similarity matrix

Now we consider the evaluation of the likelihood when the rank of K, k, is low (k < n) (i.e., K is

not full rank). This condition will occur when the RRM is used and the number of SNPs used to

estimate it, sc = k, is smaller than n. It will also occur if we reduce the rank of K to k ≤ min(n, sc)

by eliminating the eigenvectors with the lowest eigenvalues as described in Discussion of the main

paper. We address both possibilities in this section.

Let USUT = K be the complete spectral decomposition of K. Thus, S is an n × n diagonal

matrix containing the k non-zero eigenvalues on the top-left of the diagonal, followed by n− k zeros

on the bottom-right, and U is an n×n matrix of eigenvectors. Now, write the full n×n orthonormal

matrix U as U ≡ [U1,U2], where U1 ∈ R
n×k contains the eigenvectors corresponding to non-zero

eigenvalues, and U2 ∈ R
n×n−k contains the eigenvectors corresponding to zero eigenvalues. Thus,

we have

K = USUT = [U1,U2]

[

S1 0

0 S2

]

[U1,U2]
T = U1S1U

T

1
+ U2S2U

T

2
.

As S2 = [0], K can be recovered by the k-spectral decomposition of K:

K = U1S1U
T

1
.

The expression (K + δI), however, is always of full rank (because δ > 0):

K + δI = U (S + δI)UT = U

[

S1 + δIk 0

0 δIn−k

]

UT.

Therefore, it is not possible to simply ignore U2 while using our previous approach (as in in Sec-

tion 1), as U2 enters the expression for the log likelihood. Furthermore, directly computing the

complete spectral decomposition does not exploit the low rank of K. Thus, we use algebraic ma-

nipulations to rewrite the likelihood in terms not involving U2, as explained next. As a result, we

incur only the computational complexity of computing U1 rather than U.

3.1 Linear time evaluation of the likelihood

To exploit the low rank of K to evaluate the log likelihood efficiently, one possible approach would

be to augment the spectrum using n − k vectors that are orthogonal to the first k. Unfortunately,

this strategy has a time complexity of O((n−k)n2). Consequently, we take the following alternative

approach.
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We begin with Equation 1.2:

LL(δ, σ2

g, β) = −
1

2

(

n log
(

2πσ2

g

)

+ log |(K + δI)| +
1

σ2
g

(y − Xβ)
T
(K + δI)

−1
(y − Xβ)

)

.

The two terms involving K+δI are highlighted in color and will be treated separately in the following.

As in Equation 1.5, the log-determinant of the genetic similarity matrix can be efficiently com-

puted using the economy SVD of X to obtain the spectral decomposition of K:

log |(K + δI)| =

n
∑

i=1

log ([S]ii + δ) =

k
∑

i=1

log ([S]ii + δ) + (n − k) (log δ), (3.1)

where we use the fact that the last n − k singular values are zero.

Also, as we show in Section 3.3, the residual quadratic form can be evaluated using the low-rank

decomposition:

(y − Xβ)T (K + δI)−1 (y − Xβ) =
(

UT

1
y − UT

1
Xβ
)T

(S1 + δIk)−1
(

UT

1
y − UT

1
Xβ
)

+
1

δ

((

In − U1U
T

1

)

y −
(

In − U1U
T

1

)

Xβ
)T ((

In − U1U
T

1

)

y −
(

In − U1U
T

1

)

Xβ
)

. (3.2)

Furthermore, both terms in the expression on the right can be written as sums, leading to

(y − Xβ)
T
(K + δI)

−1
(y − Xβ) =

k
∑

i=1

([UT

1y]i − [UT

1X]i: β)
2

[S]ii + δ
+

1

δ

n
∑

i=1

([

y − U1

(

UT

1y
)]

i
−
[

X − U1

(

UT

1X
)]

i
β
)2

. (3.3)

3.2 Finding the maximum likelihood and parameters efficiently

Plugging both the determinant (Equation 3.1) and the quadratic form (Equation 3.3) into the log

likelihood, we obtain

LL(δ, σ2

g , β) = −

1

2

(

n log
(

2πσ
2

g

)

+
k
∑

i=1

log
(

[S]
ii

+ δ
)

+ (n − k) (log δ)

)

−

1

2σ2
g

(

k
∑

i=1

([

UT

1y
]

i
−

[

UT

1X
]

i:
β
)

2

[S]
ii

+ δ
+

1

δ

n
∑

i=1

([

y − U1

(

U
T

1y
)]

i
−

[

X − U1

(

U
T

1X
)]

i
β
)2

)

. (3.4)

Setting the gradient of LL(δ, σ2
g, β) in Equation 3.4 with respect to β to zero, we obtain

β̂ =

[(

k
∑

i=1

1

[S]ii + δ

[

UT

1X
]T

i:

[

UT

1X
]

i:

)

+

(

1

δ

n
∑

i=1

[(

I− U1U
T

1

)

X
]T

i:

[(

I − U1U
T

1

)

X
]

i:

)]−1

∗

[(

k
∑

i=1

1

[S]ii + δ

[

UT

1
X
]T

i:

[

UT

1
y
]

i

)

+

(

1

δ

n
∑

i=1

[(

I− U1U
T

1

)

X
]T

i:

[(

I − U1U
T

1

)

y
]

i

)]

. (3.5)
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Plugging β̂ into the log likelihood and setting the derivative with respect to σ2
g to zero, we get

0 = −

1

2







n

σ̂2
g

−

1

σ̂4
g







k
∑

i=1

(

[

UT

1y
]

i
−

[

UT

1X
]

i:
β̂
)

2

[S]
ii

+ δ
+

1

δ

n
∑

i=1

(

[(

I− U1U
T

1

)

y
]

i
−

[(

I− U1U
T

1

)

X
]

i:
β̂
)

2












.

Consequently,

σ̂2

g =
1

n







k
∑

i=1

(

[UT

1
y]i − [UT

1
X]i: β̂

)2

[S]ii + δ
+

1

δ

n
∑

i=1

(

[(

I − U1U
T

1

)

y
]

i
−
[(

I − U1U
T

1

)

X
]

i:
β̂
)2






. (3.6)

Plugging Equations 3.5 and 3.6 into 3.4 yields

LL(δ, σ̂2

g , β̂) = −

1

2

(

n log (2π) +
k
∑

i=1

log
(

[S]
ii

+ δ
)

+ (n − k) (log δ)

)

−

1

2






n + n log

1

n







k
∑

i=1

(

[

UT

1y
]

i
−

[

UT

1X
]

i:
β̂
)2

[S]
ii

+ δ
+

1

δ

n
∑

i=1

(

[

y − U1

(

U
T

1y
)]

i
−

[

X −U1

(

U
T

1X
)]

i
β̂
)

2












,

(3.7)

which can be evaluated in O(n + k).

3.3 Derivation of the low-rank quadratic form

Let K be a rank k genetic similarity matrix whose spectral decomposition can be written

K = USUT = U1S1U
T

1 + U2S2U
T

2 = U1S1U
T

1 + U2 [0]UT

2 = U1S1U
T

1,

where

U = [U1,U2] , (3.8)

U1 ∈ R
n×k contains the eigenvectors corresponding to non-zero eigenvalues, and U2 ∈ R

n×n−k.

Using the fact that U ∈ Rn×n is a normal matrix, that is, U−1 = UT, we have

In = UUT = [U1,U2] [U1,U2]
T

= U1U
T

1 + U2U
T

2. (3.9)

Solving Equation 3.9 for U2U
T

2
, we get

U2U
T

2
= In − U1U

T

1
. (3.10)

Further, because the columns of U are orthonormal, it follows that

In = UTU,

Ik = UT

1
U1,
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In−k = UT

2
U2. (3.11)

Let a ≡ (y − Xβ). Our goal is to efficiently evaluate aT (K + δI)
−1

a. Substituting the spectral

decomposition for K into this expression, we have

aT (K + δI)
−1

a =
(

UTa
)

T

(S + δI)
−1
(

UTa
)

. (3.12)

Using Equation 3.8, we can stack the matrix product in blocks involving U1 and U2 to re-write this

expression as
[

UT

1a UT

2a
]T

[

(S1 + δIk)
−1

0

0 (δIn−k)−1

]

[

UT

1a UT

2a
]

. (3.13)

As the off-diagonal blocks of the central matrix are equal to zero, the quadratic form reduces to the

sum of two terms, namely

(

UT

1
a
)T

(S1 + δIk)−1
(

UT

1
a
)

+
(

UT

2
a
)T

(δIn−k)−1
(

UT

2
a
)

. (3.14)

Substituting UT

2
U2 for In−k (using Equation 3.11), the second term becomes

(

UT

2a
)T

(δIn−k)
−1
(

UT

2a
)

=
1

δ
aTU2In−kU

T

2a =
1

δ
aTU2

(

UT

2U2

)

UT

2a. (3.15)

Finally, using Equation 3.10, we can eliminate U2 to obtain

1

δ

(

U2U
T

2
a
)T (

U2U
T

2
a
)

=
1

δ

((

In − U1U
T

1

)

a
)T ((

In − U1U
T

1

)

a
)

. (3.16)

Substituting (3.16) into (3.14), we obtain

aT (K + δI)−1
a =

(

UT

1
a
)T

(S1 + δIk)−1
(

UT

1
a
)

+
1

δ

((

In − U1U
T

1

)

a
)T ((

In − U1U
T

1

)

a
)

. (3.17)

Substituting (y − Xβ) for a, we obtain Equation 3.2.

4 Restricted maximum likelihood

So far the derivations have been limited to maximum likelihood parameter estimation. However, it

is straightforward to extend these results to the restricted log likelihood, which comprises the log

likelihood (with β̂ plugged in), plus three additional terms [1]:

REMLLR

(

σ2

e , σ2

g

)

= LL
(

σ2

e , σ2

g , β̂
)

+
1

2

(

d log
(

2πσ2

g

)

+ log
∣

∣XTX
∣

∣− log
∣

∣

∣X
T (K + δI)

−1
X

∣

∣

∣

)

.

Again, using the spectral decomposition of K, the restricted log likelihood becomes

REMLLR

(

σ
2

e , σ
2

g

)

= LL
(

σ
2

e , σ
2

g , β̂
)

+
1

2

(

d log
(

2πσ
2

g

)

+ log
∣

∣X
T
X
∣

∣

− log
∣

∣

∣

(

U
T
X
)T

(S + δI)−1
(

U
T
X
)

∣

∣

∣

)

.

Neglecting the cubic dependence on d for computing the determinants, these additional terms can

be evaluated in time complexity O(n). If K has rank k < n, we can evaluate the additional terms in
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O(n + k), using the k-spectral decomposition K = U1S1U
T

1
. For this purpose, we re-use the results

from Section 3.3, substituting X for a, to get

REMLLR

(

σ2

e , σ2

g

)

= LL
(

σ2

e , σ2

g , β̂
)

+
1

2

(

d log
(

2πσ2

g

)

+ log
∣

∣XTX
∣

∣

)

+
1

2

(

− log

∣

∣

∣

∣

(

UT

1
X
)T

(S1 + δIk)−1
(

UT

1
X
)

+
1

δ

((

In − U1U
T

1

)

X
)T ((

In − U1U
T

1

)

X
)

∣

∣

∣

∣

)

.

The restricted maximum likelihood (REML) variance component estimate is given by

σ̂2

g =
1

n − d

n
∑

i=1

(

[UTy]i − [UTX]i: β̂
)2

[S]ii + δ
.

The formulas for the remaining parameters remain unchanged. The space requirements for REML

are the same as those for ML.

5 FaST-LMM for groups of genetically identical individuals

and for compression

FaST-LMM can be made even more efficient when multiple individuals share the same genotype or

when the LMM is compressed (as in compressed mixed linear models (CMLM) [7]). In either case,

the likelihood can be written as

LL
(

σ2

e , σ2

g , β
)

= logN
(

y|Xβ; σ2

gZKZT + σ2

eI
)

, (5.1)

where Z is an n×g binary indicator matrix, that assigns the data for each of n individuals to exactly

one of the g groups, and K is a g × g between group genetic similarity matrix. The individuals in

each group may have the same genotype, or merely a similar genotype as in the case of compression.

In the spirit of FaST-LMM, we look for an efficient way of computing the spectral decomposition

of ZKZT. This spectral decomposition can then be plugged into Formulas 3.4-3.7 as a means to

evaluate Equation 5.1, in run time and memory that are linear in the cohort size n. In Section 5.1,

we consider the case where genetic similarity is defined by an RRM, given by ZΦΦTZT. We show

that, given a g× sc matrix Φ of sc SNPs (in the case of compression obtained, e.g., by averaging the

SNP data for individuals over the members of each group), the spectral decomposition of the RRM

can be computed from the SVD of the g×sc matrix (ZTZ)1/2Φ in O(min(g, sc)gsc) time and O(gsc)

memory. (In the case of compression, the same ΦΦT would be obtained if instead we used a group-

wise average of the n × n RRM.) In Section 5.2, we consider arbitrary genetic similarity. We prove

that, given any g × g positive semi-definite group similarity matrix K, the spectral decomposition

of the n × n matrix ZKZT can be computed from the spectral decomposition of the much smaller

g × g matrix (ZTZ)1/2K(ZTZ)1/2 using O(g3) time and O(g2) memory.
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5.1 Spectral decomposition of ZΦΦTZT

Let Φ be the g × sc matrix of SNP data. Let Z be the n × g group indicator matrix that assigns

data for each of n individuals to exactly one group. Then the genetic similarity matrix becomes

ZΦΦTZT.

For our argument, we use the fact that, given a matrix A, both AAT as well as ATA share the

same eigenvalues, and that these eigenvalues are given by the square of the singular values of A.

The eigenvectors of AAT are given by the left singular vectors of A; and the eigenvectors of ATA

are given by the right singular vectors of A. So the eigenvalues of ZΦΦTZT are the same as the

eigenvalues of ΦTZTZΦ = ΦT(ZTZ)1/2(ZTZ)1/2Φ. Using the same argument, the latter matrix has

the same eigenvalues as (ZTZ)1/2ΦΦT(ZTZ)1/2. These eigenvalues are given by the square of the

singular values of (ZTZ)1/2Φ, where (ZTZ)1/2 is a g × g diagonal matrix holding the square root of

the number of members of each group on the diagonal. Because (ZTZ)1/2 is diagonal, multiplication

can be done in O(gsc) time.

Let ŨS̃VT be the SVD of (ZTZ)1/2Φ. Then the following holds:

ZΦΦTZT = Z(ZTZ)−1/2(ZTZ)1/2ΦΦT(ZTZ)1/2(ZTZ)−1/2ZT, (5.2)

where (ZTZ)−1/2 is a g × g diagonal matrix, holding one over the square root of the number of

members of each group on its diagonal. Substituting (ZTZ)1/2Φ by its SVD, we get

Z(ZTZ)−1/2ŨS̃VTVS̃ŨT(ZTZ)−1/2ZT.

Finally, by orthonormality of V, this expression simplifies to

Z(ZTZ)−1/2ŨSŨT(ZTZ)−1/2ZT, (5.3)

where S = S̃2 is a diagonal matrix, holding the non-zero eigenvalues of ΦΦT on its diagonal. The

columns of Z(ZTZ)−1/2Ũ are orthonormal, as can be seen by

ŨT(ZTZ)−1/2ZTZ(ZTZ)−1/2Ũ = ŨT(ZTZ)(ZTZ)−1Ũ = ŨTŨ = Ig. (5.4)

where we have once again used the fact that (ZTZ) is diagonal. It follows that Z(ZTZ)−1/2Ũ holds

the eigenvectors of ZΦΦTZT, completing the spectral decomposition of ZΦΦTZ. Note that the

rotation of the data by (Z(ZTZ)−1/2Ũ)T can be done efficiently by multiplying the data by the

transpose of the rows of (ZTZ)−1/2Ũ belonging to the respective group.

5.2 Spectral decomposition of ZKZT, when the factors are not known

Here we extend the arguments in Section 5.1 to any positive semi-definite g × g group genetic simi-

larity matrix K. In this case, the spectral decomposition of ZKZT = USUT can also be computed

efficiently, namely from the spectral decomposition of (ZTZ)1/2K(ZTZ)1/2 = ŨSŨT, which can be

computed in O(g3) run time. As K is positive semi-definite, there always exists some square root

Φ of K, such that K = ΦΦT. In Section 5.1, we have shown, that ZKZT and (ZTZ)1/2K(ZTZ)1/2

have the same eigenvalues. Consequently, we can compute the eigenvalues S of ZKZT from the

spectral decomposition ŨSŨT. Analogous to the derivation in Equations 5.2-5.3, it follows that the

eigenvectors of ZKZT are Z(ZTZ)−1/2Ũ, where by Equation 5.4, the columns are orthonormal.
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Supplementary Note 2: Null-Model Contamination

In our experiments measuring the accuracy of association P values in the main paper, the SNPs

being tested and the SNPs used to estimate genetic similarity were deliberately made disjoint. Here,

we discuss the reason for this approach.

As discussed in the main paper, a LMM with no fixed effects using an RRM constructed from a

set of SNPs is equivalent to a linear regression of the SNPs on the phenotype, with linear weights

(i.e., SNP effects) integrated over independent Normal distributions having the same variance [1].

So, by using a LMM with an RRM to test a given SNP for an association with the phenotype, we

are in effect adjusting for background SNPs, precisely those used to construct the RMM. Thus, when

testing a given SNP, using that SNP in the computation of the RRM would be equivalent to using

that SNP as a regressor in the null model, making the log likelihood of the null-model higher than it

should be, thus making the P value higher than it should be. We call this phenomenon null-model

contamination. A weaker form of this phenomenon could exist due to linkage disequilibrium.

In this note, we show that, on the WTCCC data for the CD phenotype with non-white individuals

and close family members included, this effect produces substantially deflated P values as measured

by the λ statistic, and quantify the degree to which LD plays a role. In an ideal experiment, we

would compare the λ statistic for two association tests of each available SNP, one where the RRM

is constructed from all SNPs, and one where the RRM is constructed from all SNPs but the SNP

being tested (and those nearby having at least a certain amount of LD with it). Unfortunately, such

a comparison is computationally infeasible, as it would require the construction of many thousands

of RRMs and their corresponding spectral decompositions.

Instead, we used an approach where the SNPs used to construct the RRM were chosen to be

systematically further and further away from a set of test SNPs, while holding the number of SNPs

used to construct the RRM (i.e., the number of background SNPs in the equivalent linear regression)

constant. In particular, after ordering SNPs by their position, we used every thirty-second SNP

starting from the ith SNP in each chromosome to form a set of test SNPs. In addition, we created

six sets of SNPs to construct RRMs, each set lying further away from the set of test SNPs. In a

given set, we included every thirty-second SNP starting at the i + jth SNP in each chromosome,

j = 0, 1, 2, 4, 8, and 16. This experiment was performed for i = 1, 2, 3, 4, and 5. Each set of SNPs

contained approximately 11K SNPs. As shown in Fig. 1, λ generally increased with j for j ≤ 8,

beyond which LD presumably had little effect. Note that the values for λ for the experiments having

the greatest amount of null contamination (j = 0) were quite similar to those when all 367K SNPs

were used to construct the RRM (differences were less than 0.027 over all values of i), suggesting

that our experiment did not deviate substantially from the idealized one.

These experiments show that null-model contamination can be a substantial effect. Consequently,

when using a LMM to test whether a given SNP is associated with the phenotype, the RRM should

be computed from all SNPs except for those in close proximity to the test SNP. As this approach is

again computationally infeasible, in our experiments in the main paper evaluating the accuracy of

association P values, we tested SNPs on chromosome 1 and constructed the “gold-standard” RRM

from all SNPs on all but chromosome 1. We used chromosome 1 because it has a large number of
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Figure 1: The λ statistic as a function of the minimum distance between a SNP in the test set and

a SNP in the set used to construct the RRM. Each set of SNPs was selected by incorporating every

thirty-second SNP along each chromosome starting at position i.

SNPs for testing and because there were enough genome-wide significant SNPs to assess the effects

of sampling on calls of significance.
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